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Abstract

The modified BGK equation adapted to various flow regimes can be presented by the aid of the basic characteristics

on molecular movement and collision approaching to equilibrium. The discrete velocity ordinate method is developed

and applied to the velocity distribution function to remove its continuous dependency on the velocity space, and then

the velocity distribution function equation is cast into hyperbolic conservation law form with nonlinear source terms.

Based on the unsteady time-splitting method and the non-oscillatory, containing no free parameters, and dissipative

(NND) scheme, the gas kinetic finite difference second-order scheme is constructed for the computation of the discrete

velocity distribution functions. The mathematical model on the interaction of molecules with solid surface is studied

and used in the numerical method. Four types of numerical quadrature rules, such as the modified Gauss–Hermite

formula, the composite Newton–Cotes integration method, the Gauss–Legendre numerical quadrature rule, and the

Golden Section number-theoretic integral method, are developed and applied to the discretized velocity space to

evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic

algorithm is established for the flows from rarefied transition to continuum regime. Based on analyzing the inner

parallel degree of the unified algorithm, the parallel strategy adapted to the gas kinetic numerical algorithm is studied,

and then the HPF parallel processing software for the unified algorithm is developed. To test the present method, the

one-dimensional shock-tube problems, the flows past two-dimensional circular cylinder, and the flows around three-

dimensional sphere and spacecraft shape with various Knudsen numbers are simulated. The computational results are

found in high resolution of the flow fields and good agreement with the theoretical, DSMC, N–S, and experimental

results.
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1. Introduction

Because of the complexity of the nonlinear integral-differential nature of the Boltzmann equation [1,2],

mathematical difficulties are indeed formidable, which one encounters in handling the full Boltzmann

equation for the analysis of the gas dynamic phenomena from various flow regimes. In order to make the

problem tractable, the Monte Carlo method to simulate the Boltzmann equation has been presented [3–5]

in the view of the theory of microscopic molecular dynamics. The direct simulation Monte Carlo (DSMC)

method [6–8] has been widely used in the rarefied gas dynamics, in which the movement and collision
between molecules are uncoupled over the discrete time interval small compared with the mean free time

per molecule. While it has been greatly successful for the DSMC method to simulate the rarefied gas flows

with large Knudsen numbers, it is very difficult for the DSMC method to simulate the transition or con-

tinuum flows with small Knudsen numbers due to the limitation to the cell size and time step of the method

for itself. In addition, kinds of kinetic model equations resembling to the original Boltzmann equation

concerning the various order of moments have been put forward [9–15] according as the mass, momentum,

and energy conservation laws. Based on the zeroth, first, and second-order approximation of the Max-

wellian distribution, the Euler, N–S, and Burnett equations describing the macroscopic gas dynamics can
be, respectively, deduced by applying the Chapman–Enskog expansion [1] to the Boltzmann equation or the

simple BGK model equation. As a simplified form of the full Boltzmann equation, the BGK model

equation provides a more tractable way to solve comparatively complex gas flow problems, which [9,16,17]

supposes that the effect of collisions is roughly proportional to the departure of the true velocity distri-

bution function from a Maxwellian. However, the model predicts [18,19] that the Prandtl number is unity

whereas the correct value for a monatomic gas is very nearly 2/3, in which the collision frequency is in-

dependent of velocities. It has been suggested from the [1,7,20,21] that a unified simplied velocity distri-

bution function equation can qualitatively describe complex gas flows from various flow regimes, which is
described in Section 2. Thus, as a qualitative method, instead of solving the full Boltzmann equation one

solves the modified BGK equation and probably finds a unified numerical algorithm for flows over a wide

range of Knudsen numbers.

Based on concepts from the kinetic theory of gases, some gas-kinetic numerical methods [22,23] have

been developed to solve continuum problems from inviscid compressible gas dynamics, which use Boltz-

mann-like equations as the starting point. In the 1990s, applying the asymptotic expansion of the molecular

velocity distribution function to the Maxwellian distribution based on the flux conservation at the cell

interface, new BGK-type schemes [24–26] adapt to compressible flows of continuum regime have been
presented according to the thoughts of the Chapman–Enskog expansion. The schemes have successfully

simulated many of problems, such as one-dimensional shock structures, two-dimensional shock wave re-

flections, inviscid and viscous flows, etc. In the computation of rarefied gas flows, the high resolution ex-

plicit and implicit finite difference methods to solve two-dimensional nonlinear BGK–Boltzmann equations

have been set forth [27–32] on the basis of the introduction of the reduced velocity distribution functions

and the application of the discrete ordinate method. The reliability and efficiency of the method have been

demonstrated in applications to both steady and unsteady one- and two-dimensional rarefied gas dynamical

problems.
In this study, based on the basic characteristics of molecular movement and collision approaching to

equilibrium, the modified BGK equation adapted to various flow regimes can be described. In terms of the

principle of probability statistics in the kinetic theory of gases, the discrete velocity ordinate technique is

developed and applied to the velocity distribution function equation in order to replace its continuous

dependency on the velocity space, and then the single equation will be cast into hyperbolic conservation

equations with nonlinear source terms in the physical space and time. Drawing on the decoupling technique

on molecular movement and collision in the DSMC method, the unsteady time-splitting method is used to

split up the discrete velocity distribution function equations into the colliding relaxation equation and the
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convective movement equations. The non-oscillatory, containing no free parameters and dissipative (NND)

scheme [33,34], is employed to solve the convective equations and the second-order Runge–Kutta method is

used to numerically simulate the colliding relaxation equation. The gas kinetic finite difference method for

directly solving the molecular velocity distribution functions will be established by the way of coupling and

iteration. To improve the computational efficiency for various Mach number flows, four types of quad-

rature rules, such as the modified Gauss–Hermite quadrature formula [35] and the Golden Section number-

theoretic integral method which is developed out of the original works [36] of Hua and Wang, are applied

to the discretized velocity space to select the discrete velocity grid points and evaluate the macroscopic flow
parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm will be

developed for the gas dynamical problems from various flow regimes. Based on the parallel characteristics

of the respective independent discrete velocity points in the discretized velocity space, the parallel project

suitable for the gas kinetic numerical algorithm is investigated, and then the HPF (High Performance

Fortran) parallel program software capable of effectively simulating the gas dynamical problems covering

the full spectrum of flow regimes will be developed for the unified algorithm. To illustrate the feasibility of

the present algorithm, the one-dimensional shock-tube problems, the supersonic flows past circular cyl-

inder, and the gas flows around three-dimensional sphere and spacecraft shape with various Knudsen
numbers will be simulated.
2. Description of the simplified velocity distribution function equation for various flow regimes

The Boltzmann equation [1] can describe the molecular transport phenomena from full spectrum of flow

regimes in the view of micromechanics and act as the basic equation to study the gas dynamical problems. It

represents the relationships between the velocity distribution function which provides a statistical de-
scription of a gas at the molecular level and the variables on which it depends. The gas transport properties

and the governing equations describing macroscopic gas flows can be obtained from the Boltzmann or its

model equations by using the Chapman–Enskog asymptotic expansion method. Based on the investigation

to the molecular colliding relaxation from Bhatnagar et al. [9], the BGK collision model equation [9,16,17]

was proposed by replacing the collision integral term of the Boltzmann equation with simple colliding

relaxation model,

of
ot

þ ~VV � of
o~rr

¼ �mmðf � fMÞ; ð1Þ

where f is the molecular velocity distribution function which depends on space~rr, molecular velocity ~VV , and
time t, fM is the Maxwellian equilibrium distribution function, and mm is the proportion coefficient of the

BGK equation, which is also named as the collision frequency,

fM ¼ n=ð2pRT Þ3=2 exp
�
� c2=ð2RT Þ

�
: ð2Þ

Here, n and T, respectively, denote the number density and temperature of gas flow, R is the gas constant,

and c represents the magnitude of the thermal (peculiar) velocity~cc of the molecule, that is~cc ¼ ~VV � ~UU and
c2 ¼ c2x þ c2y þ c2z . The ~cc consists of cx ¼ Vx � U , cy ¼ Vy � V and cz ¼ Vz � W along the x-, y-, and

z-directions, where ðU ; V ;W Þ corresponds to three components of the mean flow velocity ~UU .

The BGK equation is an ideal simplified form of the full Boltzmann equation. According to the BGK

approximation, the velocity distribution function relaxes towards the Maxwellian distribution with a time

constant of s ¼ 1=mm. The BGK equation can provide the correct collisionless or free-molecule solution, in

which the form of the collision term is immaterial, however, the approximate collision term would lead to

an indeterminate error in the transition regime. In the Chapman–Enskog expansion, the BGK model

corresponds to the Prandtl number, as the ratio of the coefficient of viscosity l and heat conduction K
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obtained at the Navier–Stokes level, is equal to unity [18], unlike the Boltzmann equation which agrees with

experimental data in making it approximately 2/3. Nevertheless, the BGK model has the same basic

properties as the Boltzmann collision integral. It is considered [1,7,20,21] that the BGK equation can de-

scribe the gas flows in equilibrium or near-equilibrium state.

The BGK model is the simplest model based on relaxation towards Maxwellian. It has been shown from

[20,21] that the BGK equation can be improved to better model the flow states far from equilibrium. In

order to have a correct value for the Prandtl number, the local Maxwellian fM in the BGK equation can be

replaced by Eq. (1.9.7) from [21], as it leads to the ellipsoidal statistical (ES) model equation [12,37,38]. In
this study, the fM in Eq. (1) is replaced by the local equilibrium distribution function f N from the Shakov

model [13,27,30,39]. The function f N is taken as the asymptotic expansion in Hermite polynomials with

local Maxwellian fM as the weighting function,

f N ¼ fM � 1
h

þ ð1� PrÞ~cc �~qq c2=ðRT Þ
�

� 5
�
=ð5PRT Þ

i
: ð3Þ

Here, Pr is the Prandtl number with Pr ¼ lCp=K and is equal to 2=3 for a monatomic gas, Cp is the specific

heat at constant pressure, and~qq and P, respectively, denote the heat flux vector and gas pressure. It can be

shown that if Pr ¼ 1 is set in Eq. (3), the BGK model is just recovered with f N ¼ fM.
According to the relaxation time approximation [1,18,19], the collision frequency mm in Eq. (1) can be

extended and related to the kinetic temperature as a measure of the variance of all thermal velocities in

conditions far from equilibrium by using the temperature dependence of the coefficient of viscosity. The
nominal collision frequency (inverse relaxation time) can be taken in the form [27,30]

m ¼ nkT=l; ð4Þ

where n is the number density, k is Boltzmann�s constant, and l ¼ lðT Þ is the coefficient of the viscosity.

Since the macroscopic flow parameters at any time at each point of the physical space are derived from

moments of f over the velocity space in the kinetic theory of gases, the collision frequency m is variable along
with the space~rr, time t, and thermal velocity~cc ¼ ~VV � ~UU . Consequently, this collision frequency relationship

can be extended and applied to regions of extreme non-equilibrium [7,20,21].

The power law temperature dependence of the coefficient of viscosity can be obtained [7,18] from the
Chapman–Enskog theory, which is appropriate for the inverse power law intermolecular force model and

the VHS (Variable Hard Sphere) molecular model,

l=l1 ¼ ðT=T1Þv; ð5Þ

where v is the temperature exponent of the coefficient of viscosity that can also be denoted as

v ¼ ðfþ 3=ð2ðf� 1ÞÞ for the Chapman–Enskog gas of inverse power law, f is the inverse power coefficient

related to the power force F and the distance r between centers of molecules, that is F ¼ j=rf with a

constant j.
The viscosity coefficient l1 in the free stream equilibrium can be expressed [7] in terms of the nominal

freestream mean free path k1 for a simple hard sphere gas,

l1 ¼ 5

16
mn1ð2pRT1Þ1=2k1: ð6Þ

Here, the subscripts 1 represent the freestream value.

The collision frequency m of the gas molecules can be expressed as the function of density, temperature,

the freestream mean free path and the exponent of molecular power law by the combination of Eqs. (4)–(6),

m ¼ 16

5

ffiffiffiffiffiffi
R
2p

r
T v�1=2
1
n1

n
T v�1

1

k1
: ð7Þ
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Based on the feature of molecular movement and collision approaching to equilibrium, the BGK

equation can be revised by using f N and m from Eqs. (3) and (7), respectively, to replace fM and mm in Eq.

(1). The m and the appropriate f N can be integrated with the flow states, the macroscopic flow parameters,

the molecular transport coefficients, the thermodynamic effect and the molecular power law from various

flow regimes. Consequently, the non-dimensional form of the unified simplified velocity distribution

function equation which qualitatively describes gas flow characteristics from various flow regimes [27,30]

can be presented in the Cartesian coordinates:
of
ot

þ ~VV � of
o~rr

¼ mðf N � f Þ; ð8Þ
f N ¼ fM � 1
h

þ ð1� PrÞ~cc �~qq 2c2=T
�

� 5
�
=ð5PT=2Þ

i
; ð9Þ
fM ¼ n=ðpT Þ3=2 exp
�
� c2=T

�
; ð10Þ
m ¼ 8nT 1�v= 5
ffiffiffi
p

p
Kn

� �
; ð11Þ
where Kn is the Knudsen number with Kn ¼ k1=L which is the ratio of the freestream mean free path k1 to

the characteristic length L of the problem, all of the variables in Eqs. (8)–(11) or in the following have been

non-dimensionalized. Each dimensionless quantity is referred to its freestream equilibrium values at infinity
(n1; T1Þ. The reference speed c1 is

ffiffiffiffiffiffiffiffiffiffiffiffi
2RT1

p
, the reference force is mn1c21=2, the reference heat flux is

mn1c31=2 and the reference time t1 is L=c1, the reference distribution function is n1=c31.
The macroscopic flow parameters, such as the number density, mean flow velocity, temperature, pres-

sure, viscous stress tensor and heat flux vector, can be determined [1,7,20] from the moments of the velocity

distribution function over the molecular velocity space.
nð~rr; tÞ ¼
Z

f d~VV ; ð12Þ
nUið~rr; tÞ ¼
Z

Vif d~VV ; ð13Þ
3

2
nT ð~rr; tÞ ¼

Z
c2f d~VV ; ð14Þ
P ¼ nT ; ð15Þ
sijð~rr; tÞ ¼ 2

Z
cicjf d~VV � Pdij; ð16Þ
qið~rr; tÞ ¼
Z

c2cif d~VV ; ð17Þ

where dij is the Kronecker delta, the subscripts i and j each range from 1 to 3. The values 1, 2 and 3 may be

identified with components along the x-, y- and z-axes, respectively.
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3. Application of the discrete velocity ordinate method in gas kinetic theory

3.1. Development of discrete velocity ordinate method

The discrete ordinate method [40] is based on the representation of functions by a set of discrete

points that coincide with the evaluation points in a quadrature rule, which consists of replacing the

original functional dependency on the integral variable by a set of functions with N elements WipðxiÞ
(i ¼ 1; . . . ;NÞ, where the points xi are quadrature points and Wi are the corresponding weights of the

integration rule

Z b

a
W ðxÞpðxÞdx ¼

XN
i¼1

WipðxiÞ: ð18Þ

The interval ½a; b� will be either ½0;1� or ½�1;1� for the application considered and a different weight

function W ðxÞ is chosen for each problem considered. The xi are the roots of the Nth-order polynomial

RnðxÞ of the set that satisfy,

Z b

a
W ðxÞRnðxÞRiðxÞdx ¼ din; ð19Þ

where the set of polynomials RnðxÞ, orthonormal with respect to the weight function W ðxÞ on the interval

½a; b�, form a complete basis of the L2½a; b� Hilbert space. The first N of these polynomials form a subspace

of this Hilbert space which is isomorphic with the RN Euclidean space. It may be shown from the treatment

of the integral over the interval ½a; b� with the quadrature rule equation (18) that the discrete ordinate

representation is equivalent to the truncated polynomial representation of the Nth-order.

It is shown from [41,42] that, in general, the velocity distribution function f for states removed from
equilibrium is proportional to expð�c2Þ just as it is for equilibrium, that f has finite bounds under the

specific precision in the velocity space and tends to zero as c tends to infinity. That is, the integration of

the normalized distribution function over all velocity space should yield unity, and the probability of the

molecular velocities far removed from the mean velocity ~UU of the flow is always negligible. Thus, in order to

replace the continuous dependency of the molecular velocity distribution function on the velocity space,

the discrete ordinate technique can be introduced to discretize the finite velocity region removed from ~UU .

The choice of the discrete velocity ordinate points in the vicinity of ~UU is based only on the moments of the

distribution function over the velocity space. Consequently, the numerical integration of the macroscopic
flow moments in Eqs. (12)–(17) of the distribution function f over the velocity space can be adequately

performed by the same quadrature rule, with f evaluated at only a few discrete velocity points in the vi-

cinity of ~UU . The selections of the discrete velocity points and the range of the velocity space in the discrete

velocity ordinate method are somewhat dependent on the related problems.

Applying the discrete velocity ordinate method to Eq. (8) for the (Vx; Vy ; VzÞ velocity space, the single

velocity distribution function equation can be transformed into hyperbolic conservation equations with

nonlinear source terms at each of discrete velocity grid points,

oQ
ot

þ oF x

ox
þ oF y

oy
þ oF z

oz
¼ �SS; ð20Þ

with

Q ¼ fr;d;h; F x ¼ VxrQ; F y ¼ VydQ; F z ¼ VzhQ; �SS ¼ m f N
r;d;h

�
� fr;d;h

�
;
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where fr;d;h and f N
r;d;h, respectively, denote values of f and f N at the discrete velocity ordinate points ðVxr,

Vyd; VzhÞ, the subscripts r, d and h represent the discrete velocity grid indexes in the Vx-, Vy- and Vz-directions,
respectively.

3.2. Study of discrete velocity quadrature methods

Once the discrete velocity distribution functions fr;d;h are solved, the macroscopic flow moments at any

time in each point of the physical space can be obtained and updated by the appropriate discrete velocity

quadrature method. In terms of the symmetric quality of the exponential function expð�V 2Þ over the in-

terval ½�1;1�, the Gauss–Hermite half-range quadrature [35,43] can be extended to evaluate the infinite

integral of the velocity distribution function over all the velocity space. The discrete velocity ordinate points

and the weights corresponding to the Gauss–Hermite quadrature can be obtained using the algorithms
described by Huang and Giddens [43] and by Shizgal [35], which can be used to approximate the integrals

with the exponential type as follows:

Z 1

0

e�V 2

pðV ÞdV �
XN
r¼1

WrpðVrÞ; ð21Þ

where Vr ðr ¼ 1; . . . ;NÞ are the positive roots of the Hermite polynomial of degree N , Wr are the corre-

sponding weights, the subscript r is the discrete velocity index and pðV Þ denote the functions which can be

derived from the integrands in Eqs. (12)–(17). According to Kopal�s discussion [44], it is known that for a
given number of discrete subdivisions of the interval ð0;þ1Þ, the Gauss–Hermite�s choice of the discrete

velocity points Vr and the corresponding weights Wr yields the optimal discrete approximation to the

considered integration in the sense. The Gauss–Hermite�s Vr and Wr can be tabulated in the table of the

Gauss–Hermite quadrature. However, the number of the discrete velocity points is limited in this way, as it

is very difficult exactly to solve high-order Hermite polynomial. The Vr and Wr can also be obtained by

directly solving the nonlinear Eqs. (21) and (22) in terms of the decomposing principle,Z 1

0

e�u2uk du ¼ 1

2
C

k þ 1

2

� 	
: ð22Þ

It is shown from the computing practice [45] that it is difficult to ensure the numerical stability with the

computation of Eqs. (21) and (22) when the number of discrete velocity points is greatly increased, as

indicates that farther application of the Gauss–Hermite quadrature method to high speed gas flows may be

restricted.
The advantage of using the modified Gauss–Hermite quadrature formula is its high accuracy, but for

high freestream Mach number flows, the number of discrete velocity grid points needed to cover the ap-

propriate velocity range could become quite large. To simulate hypersonic flows, the composite integration

method based on equally spaced three-point Newton–Cotes formulas which can be developed by setting the

polynomial in the discrete ordinate method as a quadratic interpolating polynomial and the Gauss–

Legendre numerical quadrature rule whose integral nodes are determined by using the roots of the kth

Legendre polynomials have been applied to this study [45].

When the above-mentioned conventional quadrature methods are used to attack the approximate cal-
culation of multiple integrals, the computational effort and the numerical error will rapidly grow along with

the increase of integral overlap number. To raise the precision of solving multiple integrals in multi-

dimensional flows and simplify the numerical integration over the discrete velocity space, in particular

optimize the distribution of the discrete velocity ordinate points, the algebraic number-theoretic method

[46] and the optimum principle [47] of the Golden Section have been extended and applied to the discrete
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velocity ordinate method in this study [45]. The discrete velocity points in a direction are determined by the

increasing principle with fraction from the number theory and those in other directions are accordingly

controlled by the Golden Section method. The rational approximation from Fibonacci number to the

golden number (x ¼ ð
ffiffiffi
5

p
� 1Þ=2) is used

Fn�1

Fn





 � x





 < 1ffiffiffi
5

p
F 2
n

: ð23Þ

Here, Fn is the Fibonacci number, which is defined by F0 ¼ 0, F1 ¼ 1 and Fnþ2 ¼ Fnþ1 þ Fn ðnP 0Þ.
The algebraic number theory of uniform distribution [36] is introduced into the computation of multi-

dimensional integrals. The Hua-Wang�s method [48] in which the multi-integral is approximated by single

summation is employed. As a result, the Golden Section number-theoretic integral formula can be devel-
oped to evaluate the macroscopic flow moments over the velocity space in terms of the intrinsic relation

between the asymptotic fraction (that is 0=1; 1=1; 1=2; 2=3; 3=5; 5=8; 8=13; . . . ; Fn=Fnþ1; . . .) of the golden

number and the numerical integral. In particular, the double-integral with the integrand Qðx; yÞ can be

evaluated by

Z 1

0

Z 1

0

Qðx; yÞdxdy � 1

Fm

XFm
k¼1

Q
k
Fm

;
Fm�1k
Fm

� �� 	
; ð24Þ

where fng denotes the fractional portion of the rational number n.
The ternary-integral with the integrand Qðx; y; zÞ can be evaluated by single summation,

Z 1

0

Z 1

0

Z 1

0

Qðx; y; zÞdxdy dz � 1

n

Xn

k¼1

Q
k
n
;

h1k
n

� �
;

h2k
n

� �� 	
; ð25Þ

where ðh1; h2; nÞ can be taken as the extension on the collection of Fibonacci integer number sequence,

which can be referred by the table of the lattice point collection from [36]. It can be shown that the number

n of discrete ordinate points need to be greatly increased to diminish the error between the numerical

quadrature and the original integral and simulate high-speed gas flows, however, a great deal of computer
storage will be expected to store the discrete velocity distribution functions at those points.
4. Numerical algorithm for the velocity distribution function equations

4.1. Numerical method for one-dimensional gas flows

In order to reduce the computer storage requirement, the velocity distribution function equation can be

accurately integrated on the velocity components in some directions with appropriate weighting factors,
where the components of macroscopic flow velocity are zero. Consequently, the reduced distribution

functions can be introduced to cut back the number of independent variables in the distribution function f
in Eq. (8). For problems in one space dimension, say x, a great simplification is possible through the fol-

lowing reduction procedure. Two reduced distribution functions of the x, velocity component Vx and time t
are defined [49]:

gðx; Vx; tÞ ¼
Z 1

�1

Z 1

�1
f ðx; Vx; Vy ; Vz; tÞdVy dVz; ð26Þ
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hðx; Vx; tÞ ¼
Z 1

�1

Z 1

�1
V 2
y

�
þ V 2

z

�
f ðx; Vx; Vy ; Vz; tÞdVy dVz: ð27Þ

Now integrating out the Vy and Vz dependence on Eq. (8) in describing one-dimensional gas flows, the

following equivalent system to Eq. (8) is got:

og
ot

þ Vx
og
ox

¼ m GN
�

� g
�
; ð28Þ
oh
ot

þ Vx
oh
ox

¼ m HN
�

� h
�
; ð29Þ

where

GN ¼ GM 1
n

þ ð1� PrÞðVx � UÞqx 2ðVx
h

� UÞ2=T � 3
i.

ð5PT=2Þ
o
;

GM ¼ n=ðpT Þ1=2 exp
h
� ðVx � UÞ2=T

i
;

ð30Þ
HN ¼ HM 1
n

þ 1ð � PrÞ Vxð � UÞqx 2 Vxð
h

� UÞ2=T � 1
i.

5PT=2ð Þ
o
;

HM ¼ T � GM:
ð31Þ

The macroscopic flow parameters denoted by the reduced distribution functions can be similarly obtained
by substituting Eqs. (26) and (27) into Eqs. (12)–(17).

Thus, the molecular velocity distribution function equation for one-dimensional gas flows can be

transformed into two simultaneous equations on the reduced distribution functions instead of one single

equation and can be cast into the following conservation law form recurring to the discrete velocity

ordinate method described in the Section 3.

oU

ot
þ oF

ox
¼ S; ð32Þ

with

U ¼ gr
hr

� 	
; F ¼ VxrU; S ¼ m GN

r � gr
� �
m HN

r � hr
� �� 	

;

where gr, hr, GN
r and HN

r correspond to the values of g, h, GN and HN at the discrete velocity grid points Vxr,
respectively.

Using the NND scheme [33] with the second-order Runge–Kutta method in temporal integral, the finite
difference second-order scheme is constructed:

dtU
� ¼ RðUnÞ;

U� ¼ Un þ Dt � dtU�;

dtU
�� ¼ R U�ð Þ;

Unþ1 ¼ Un þ Dt
2
� dtU

�ð þ dtU
��Þ:

ð33Þ

The operator RðUnÞ is defined by
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R Unð Þ ¼ � 1
Dx Hn

iþ1=2

�
�Hn

i�1=2

�
þ Sn

i ;

with the numerical flux defined by

Hiþ1=2 ¼ Fþ
i þ 1

2
minmod DFþ

i�1=2;DF
þ
iþ1=2

� �
þ F�

iþ1 � 1
2
minmod DF�

iþ1=2;DF
�
iþ3=2

� �
;

and the minmod operator is defined by

minmodðx; yÞ ¼ 1
2
sgnðxÞ½ þ sgnðyÞ� �minð xj j; yj jÞ:

The stable condition of the scheme can be written as

DtS ¼ CFL
m
2

�

þ 3

2

Vxrj j
Dx

	
max

;

where the CFL number is set equal to 0.95. For accuracy, the time step should be less than the local

characteristic collision time DtC ¼ 1=mmax [7,50]. Thus,

Dt ¼ min DtC;DtSð Þ: ð34Þ

4.2. Numerical algorithm for two-dimensional gas flows

For analyses of gas flows in x and y directions around two-dimensional bodies, the molecular velocity
distribution function equation in Eq. (8) can be integrated with respect to Vz with weighting factors 1 and V 2

z

so that the number of independent variables is reduced by integrating out the dependence of f on Vz. The
following reduced distribution functions are introduced [27,30,32]:

gðx; y; t; Vx; VyÞ ¼
Z 1

�1
f ðx; y; t; Vx; Vy ; VzÞdVz; ð35Þ
hðx; y; t; Vx; VyÞ ¼
Z 1

�1
V 2
z f ðx; y; t; Vx; Vy ; VzÞdVz: ð36Þ

After substituting Eqs. (35) and (36) into Eq. (8) describing two-dimensional gas flows, and applying the

discrete velocity ordinate method to velocity components Vx and Vy , the single velocity distribution function

equation can become into two simultaneous equations with the hyperbolic conservation law form in the

transformed coordinates ðn; gÞ as follows:

oU

ot
þ oF

on
þ oG

og
¼ S; ð37Þ

with

U ¼ J
gr;d
hr;d

� 	
; F ¼ �UUU; G ¼ �VVU; S ¼ J

mðGN
r;d � gr;dÞ

mðHN
r;d � hr;dÞ

� 	
;

where gr;d, hr;d, GN
r;d and HN

r;d denote values of g, h, GN and HN at the discrete velocity points ðVxr, VyrÞ,
respectively,

GN ¼ GM 1
�

þ ð1� PrÞðciqiÞ 2c2=T
�

� 4
�
=ð5PT=2Þ

�
;

GM ¼ n
pT

exp
�
� c2=T

�
;

ð38Þ
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HN ¼ HM 1
�

þ ð1� PrÞðciqiÞ 2c2=T
�

� 2
�
=ð5PT=2Þ

�
;

HM ¼ TGM=2;

c2 ¼ Vxð � UÞ2 þ Vy
�

� V
�2
;

ciqi ¼ Vxð � UÞqx þ Vy
�

� V
�
qy :

ð39Þ

Note that �UU , �VV are the so-called ‘‘contravariant molecular velocity’’ defined as �UU ¼ Vxrnx þ Vydny ,
�VV ¼ Vxrgx þ Vydgy , J is the Jacobian of the general transformation, that is J ¼ oðx; yÞ=oðn; gÞ. The Jacobian
coefficient matrices A ¼ oF =oU and B ¼ oG=oU of the transformed equation (37) are diagonal and have

real eigenvalues a ¼ �UU and b ¼ �VV .
In view of the unsteady characteristic of molecular convective movement and colliding relaxation, the

time-splitting method [45,51] is used to divide Eq. (37) into the colliding relaxation equations with the

nonlinear source terms and the convective movement equations. Considering simultaneously proceeding on

the molecular movement and colliding relaxation in real gas, the computing order of the previous and hind

time steps is interchanged to couple to solve them in the computation. The finite difference second-order
scheme is developed by using the improved Euler method and the NND-4(a) scheme [34] which is a two-

stage scheme with second-order accuracy in time and space,

Unþ1 ¼ LSðDt=2ÞLgðDt=2ÞLnðDtÞLgðDt=2ÞLSðDt=2ÞUn; ð40Þ

where

U� ¼ LSðDtÞUn ¼ Un þ 1
�

� m
2
Dt
�
Dt � Sn; ð41Þ
U�� ¼ LgðDtÞU� ¼ 1

�
� bDtdg þ

b2Dt2

2
dg2

�
U�; ð42Þ
Unþ1 ¼ LnðDtÞU�� ¼ 1

�
� aDtdn þ

a2Dt2

2
dn2

�
U��: ð43Þ

The integration operator LSðDtÞ for the colliding relaxation source terms is done using the improved

Euler method. The one-dimensional space operators LgðDtÞ and LnðDtÞ, respectively, corresponding to the

convective movement terms oG=og and oF =on are approximated by the NND-4(a) scheme. The Dt in the

computation can be chosen [45] as

Dt ¼ minðDtC;DtSÞ:

Here, DtS ¼ CFL=maxðm=2; �UUj j=Dn; �VVj j=DgÞ.
4.3. Numerical algorithm for three-dimensional gas flows

For the three-dimensional gas flows, the molecular velocity distribution function remains to be a
function of seven independent variables in the phase space. The discrete velocity ordinate method can

be applied to the velocity distribution function in Eq. (8) to remove its continuous dependency on

velocity components ðVx; Vy ; VzÞ, as described in Section 3.1. Moreover, to treat arbitrary geometry

configuration, the body fitted coordinate is introduced. By applying the general transformation tech-

nique, Eq. (20) on the discrete velocity distribution functions can be written in the transformed

coordinates ðn; g; fÞ [45] as:
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oU
ot

þ oF
on

þ oG
og

þ oH
of

¼ S; ð44Þ

with

U ¼ JQ; F ¼ �UUU ; G ¼ �VV U ; H ¼ �WW U ; S ¼ J �SS;

where �UU ¼ Vxrnx þ Vydny þ Vzhnz, �VV ¼ Vxrgx þ Vydgy þ Vzhgz, �WW ¼ Vxrfx þ Vydfy þ Vzhfz and J ¼ oðx; y; zÞ=
oðn; g; fÞ.

Drawing on the decoupling technique [7,52] on molecular movement and colliding in the DSMC
method, the time-splitting method for the unsteady equation has been developed to split up Eq. (44) into

the colliding relaxation equations with the nonlinear source terms and the convective movement equations

in three directions so as to couple to solve them in the computation [45,53]. The colliding relaxation

equations with the nonlinear source terms are numerically simulated by the second-order Runge–Kutta

method. The NND-4(a) scheme [54] based on primitive variables is used numerically to solve the convective

movement equations. Adhering to the gas kinetic theory, the finite difference second-order scheme directly

solving the discrete velocity distribution functions is constructed as

Unþ1 ¼ LS

Dt
2

� 	
Lf

Dt
2

� 	
Lg

Dt
2

� 	
LnðDtÞLg

Dt
2

� 	
Lf

Dt
2

� 	
LS

Dt
2

� 	
Un; ð45Þ

where

U � ¼ LSðDtÞUn ¼ Un þ Dtð1� mDt=2ÞSn; ð46Þ
U �� ¼ LfðDtÞU � ¼ 1

�
� cDtdf þ

c2Dt2

2
df2

�
U �; ð47Þ
U ��� ¼ LgðDtÞU �� ¼ 1

�
� bDtdg þ

b2Dt2

2
dg2

�
U ��; ð48Þ
Unþ1 ¼ LnðDtÞU ��� ¼ 1

�
� aDtdn þ

a2Dt2

2
dn2

�
U ���: ð49Þ

Here, a ¼ �UU , b ¼ V and c ¼ �WW .

Based on the molecular collision spacing theory, the time step size ðDtÞ in the computation should be less

than the local mean collision time space ðDtCÞ [7,50], thus

Dt ¼ minðDtC;DtSÞ;

where the stable condition [45] of the scheme can be written as

DtS ¼ CFL=max m=2; �UUj j=Dn; �VVj j=Dg; �WWj j=Dfð Þ: ð50Þ

4.4. Boundary conditions and its numerical procedure

For the interaction of molecules with the body surface, perfect diffuse reflection is assumed [20,27,30,45].

That is, molecules which strike the wall surface are subsequently emitted with the Maxwellian velocity

distribution fully accommodating to the wall temperature Tw and velocity ðUw; Vw;WwÞ. The velocity dis-

tribution function reflected from the wall surface in the discrete form is set as [45]
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f w
r;d;h ¼

nw
ðpTwÞ3=2

exp

"
� ðVxr � UwÞ2 þ ðVyd � VwÞ2 þ ðVzh � WwÞ2

Tw

#
: ð51Þ

The number density of molecules diffusing from the surface, nw, which is not known previously, is deter-

mined from the mass balance condition on the surface. One has

nw ¼ �2
p
Tw

� 	1=2 Z
cn<0

c�n � f d~VV ; ð52Þ

where c�n ¼ ðcn � jcnjÞ=2, cn ¼~cc �~nn, and ~nn is the outward unit vector normal to the solid surface.

The distribution function is assumed to be in equilibrium at infinity. However, the outer boundary must

be in some finite distance from the body, so the outer boundary conditions are treated using characteristics-
based boundary conditions. The distribution function for outgoing molecules through boundaries is de-

termined in terms of the condition which is in accord with the upwind nature of the interior point scheme

[45]. For molecules incoming from outside, along with the inlet boundary ahead of the shock wave, the

distribution function is given by the equilibrium distribution with prescribed free stream properties from

upstream [51], however, on the outlet boundary, it is assumed that there is no gradient along the outward

direction for the distribution function [45].

For problems with symmetry, the half flow field is only computed to save the computer memory by the

way where the cells on the symmetrical line (plane) of the flow field are processed as interior points and the
symmetry conditions are enforced and assigned to the distributions function along the symmetrical line

(plane) of the flow field [45].
5. Numerical examples of gas flows from various flow regimes

To test the accuracy and efficiency of the present numerical method in solving the gas dynamical

problems from rarefied flow to continuum, the one-dimensional shock-tube problems, the flows past two-
dimensional circular cylinder and the flows past three-dimensional sphere with various Knudsen numbers

are simulated in the serial computer. In the computation, the convergence of a steady-state solution is

assumed to have occurred when the quadratic global relative error of the flow quantities (e.g., density, flow

velocity and temperature), which are evaluated by the discrete velocity numerical integration methods

described in Section 3, between successive iteration steps is less than 10�4.

5.1. One-dimensional shock-tube problems with various Knudsen numbers

5.1.1. Unsteady Riemann shock-tube problem

The Riemann shock-tube problem, which has been numerically studied by Chu [49], Reitz [23], Pren-

dergast and Xu [24,26], etc. can be described by the way where a diaphragm located at x ¼ 0:5 divides a

one-dimensional flow field into two regions, each in a constant equilibrium state at t ¼ 0. Here, to test the

present numerical method, a case is considered with initial states: q ¼ 0:445; T ¼ 13:21; U ¼ 0:698 for

0:06 x6 0:5 and q ¼ 0:5; T ¼ 1:9; U ¼ 0:0 for 0:5 < x6 1. The ratio of specific heats c is 5/3 for a

monatomic Maxwell gas. The cell size Dx ¼ 0:01 in the physical space was set and the six-points Gauss–

Legendre numerical quadrature rule with the discrete velocity sub-spacing DV ¼ 2:0 was employed to
evaluate the macroscopic flow moments over the velocity space, which has 61 discrete velocity grid points

ranging from )10 to 10. To see the effects of various Knudsen numbers on the shock-tube flow, the cases of

Kn ¼ 0:0001; 0:001; 0:005; 0:01; 0:1 have been computed, where the computing time step ðDtÞ was de-

termined by Eq. (34). Figs. 1 and 2, respectively, show the computational results (denoted as symbols) of
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Fig. 1. Density profiles of Riemann shock-tube problem for various Kn.

0 0.25 0.5 0.75 1

X

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

V
el

oc
ity

riemann-exact-solution
cal. euler limit solution
cal. Kn=0.0001,Pr=2/3
cal. Kn=0.001,Pr=1
cal. Kn=0.005,Pr=1
cal. Kn=0.01,Pr=2/3

Fig. 2. Velocity profiles of Riemann shock-tube problem for various Kn.

Z.-H. Li, H.-X. Zhang / Journal of Computational Physics 193 (2004) 708–738 721
density and flow velocity profiles at time t ¼ 0:1314. To see the contribution of the collision integral term in

the Boltzmann equation to the velocity distribution function, we test a numerical method which is gen-

erated from Eq. (8) by neglecting the colliding relaxation source term and setting the distribution function

in convective term equal to the equilibrium Maxwellian distribution ðf ¼ fMÞ. The solution obtained by
such a scheme is named as the Euler limit solution of continuum flow. In Figs. 1 and 2, the solid line

denotes the Riemann exact solution of inviscid gas dynamics, the symbols ðnÞ denote the computed Euler

limit solution, the symbols ðxÞ denote the computed Kn ¼ 0:0001, Pr ¼ 2=3 results, the symbols (s) denote

the computed Kn ¼ 0:001, Pr ¼ 1 results, the symbols ðrÞ denote the computed Kn ¼ 0:005, Pr ¼ 1 results,
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the symbols (�) denote the computed Kn ¼ 0:01, Pr ¼ 2=3 results and the symbols (r) denote the computed

Kn ¼ 0:1, Pr ¼ 2=3 results. It is shown that the bigger the Knudsen number becomes from Kn ¼ 0:0001 to

Kn ¼ 0:1, the thicker is the shock and expansion wave, and the rarefied flow corresponding to Kn ¼ 0:1 only
exists strong disturbance without the shock or expanding wave. The smaller is the Knudsen number, the

crisper shock and expanding wave profiles are given. The results appropriate to Kn ¼ 0:0001 are in good

agreement with the computed Euler limit solution and the exact solution of gas dynamics. The computed

velocity profiles also show a particular phenomenon that the computed flow velocity near the contact

discontinuity surface deviates from the exact solution of inviscid gas dynamics, the deviation is becoming
more prominent with increasing Knudsen number, and the deviation gradually vanishes when the Knudsen

number diminishes down to Kn ¼ 0:0001. The deviation near the contact surface shows the non-equilibrium

effects of the rarefied gas flows with various Knudsen numbers in the shock tube, as may be induced from

the conservation of the total momentum in the tube. Figs. 1 and 2 qualitatively reveal the changing process

that the gas flow becomes from rarefied flow to continuum along with diminishing the Knudsen number.
5.1.2. SOD shock-tube problem

To test the present numerical method and show the effect of rarefaction in the shock tube flow, the SOD
shock-tube problem is set with initial states: q ¼ 10; T ¼ 1:667; U ¼ 0:0 for 0:06 x6 0:5 and q ¼ 1;
T ¼ 1:333; U ¼ 0:0 for 0:5 < x6 1. The computation was gone along the physical spacing Dx ¼ 0:01 and

the composite Newton–Cotes quadrature formula with 101 discrete velocity ordinate points ranging from

)6 to 9. The computed results of pressure and temperature for the cases of Kn ¼ 0:001; 0:01; 0:1, Pr ¼ 1 at

time t ¼ 0:1912 are, respectively, shown in Figs. 3 and 4 accompanying the comparisons with the exact

solutions obtained using the Euler equations of gas dynamics of continuum flow. In Figs. 3 and 4, the solid

line denotes the Euler exact solution of the SOD shock-tube problem, the symbols ðjÞ denote the com-

puted Kn ¼ 0:001 results, the symbols (s) denote the computed Kn ¼ 0:01 results and the symbols ð,Þ
denote the computed Kn ¼ 0:1 results. It is shown that the distinct shock and rarefaction wave is gradually

forming, and the profiles of the computed pressure and temperature approach to the Euler exact solutions

of the continuum flow while the Knudsen number decreases from Kn ¼ 0:1 to 0.001. There is no shock and

expanding wave, but strong disturbance for the fully rarefied flow related to the state Kn ¼ 0:1 only exists.
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The above-mentioned phenomena are only the representation of the notable differences between continuum

and rarefied flows, which are aroused by the difference of molecular transport capability from various flow

regimes.

5.2. The normal shock-structure problems for different Mach numbers

In the case of the normal shock wave, there is no stream speed in the plane of the wave, and the

transition is from a supersonic upstream (state1) flow to a subsonic downstream (state2) flow. The shock

Mach number MS is defined as the ratio of the speed of the wave, relative to the upstream gas, to the speed
of sound in this gas. The upstream state is chosen as the reference state with q1 ¼ 1, T1 ¼ 1 and P1 ¼ 1. The

relations of the flow states (upstream q1; T1; U1 and downstream q2; T2; U2Þ across the wave are defined in

terms of the Rankine–Hugoniot conditions. The flow region is extended over a distance �x1 < x < x2. A
discontinuity between upstream and downstream states was set at x ¼ 0 as the initial condition.

To demonstrate the reliability of the present algorithm in solving the shock structure problems for

different shock Mach numbers, the cases of MS ¼ 1:2; 1:55; 8; 9 for argon gas have been computed with

Pr ¼ 2=3, c ¼ 5=3. The computed results for the density and temperature profiles are, respectively, com-

pared with the experimental data [55], N–S predictions and DSMC results [7] in Figs. 5–8, where the line
denotes the computed results and the symbols denote the aforementioned reference data. The density is

normalized in terms of the densities q1 and q2 in front of and behind the shock wave as indicated. The

normalized values of the temperature are defined in a similar manner. The length scale is normalized by the

mean free path ðk1Þ in front of the shock wave. The quoted mean free path is defined in terms of the co-

efficient of viscosity by Eq. (4.52) in [7]. The molecular model parameters for argon are employed from

Appendix A in [7]. The origin has been set at the point in the profile when the density is midway between the

upstream and downstream values. Fig. 5 presents the comparison of the computed low Mach number

density profiles corresponding to the viscosity-temperature index v ¼ 0:81 and the shock Mach number
MS ¼ 1:2 with the results of the Navier–Stokes theory, as this theory is generally supposed to be accurate

for shock Mach numbers less than 2. The space grid points used are 321 with Dx ¼ 0:25k1, and the modified

Gauss–Hermite quadrature rule with 16 discrete points is employed in the discrete velocity space. It is found



Fig. 5. Comparison of computed density profile with N–S solution for MS ¼ 1:2.

Fig. 6. Comparison of computed density profile with experimental data for MS ¼ 1:55.
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that the present kinetic solutions are in fact very close to the N–S solutions for this very weak wave. For the

case of MS ¼ 1:55, v ¼ 0:81, Fig. 6 compares the computed density profiles with Alsmeyer�s experimental

values from [55]. Overall, the excellent agreement is found.

In the computation of cases of MS ¼ 8; 9, the space grid points used are 121 with Dx ¼ 0:25k1, and the

Newton–Cotes quadrature formula was employed to evaluate the macroscopic flow moments with 121
discrete velocity ordinate points using the discrete velocity spacing DV ¼ 0:35. The coefficient of gas vis-

cosity has been assumed as the power law temperature dependence, that is l / T v. The viscosity–

temperature index v should be given variously with the different range of temperature, that is in ½0:72; 0:81�
for argon gas. The v value should decrease when the gas temperature increases. The value of v ¼ 0:81 is

appropriate at the temperature near the standard conditions. Here, the viscosity index is set as v ¼ 0:75 for
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the case of shock Mach number MS ¼ 8, and v is set as 0.72 for the case of MS ¼ 9. In Fig. 7, the computed

results of the normalized density and temperature profiles for the case of MS ¼ 8, v ¼ 0:75 are, respectively,

compared with the Bird�s DSMC simulations from [7]. The overall agreement is good and the agreement of

density is better than the temperature between the DSMC results and the present calculation. As the shock

becomes stronger, some qualitative changes to the shock profiles have been shown in Fig. 7, that is a

marked asymmetry in the profiles and an overshoot of about 1% in the temperature at the back of the wave.
The asymmetry is also accentuated by a region at the front of the wave where the density is essentially equal

to the upstream value, but where there is a significant increase in temperature. Fig. 8 shows the comparison

of the present computed density profiles and Alsmeyer�s experimental data from [55] for the case of MS ¼ 9,
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v ¼ 0:72. Overall, the two sets of results are in good agreement for this higher Mach number flow.

However, on the low-pressure side of the shock wave, the computed results show some deviation from the

experimental results and approach the conditions at infinity more slowly.

The viscous shear stress and heat flux vector are sensitive quantities inside the shock, which are defined

by Eqs. (16) and (17). To see the variation of the viscous stress and heat flux inside the shock structure with

different shock Mach numbers, Figs. 9 and 10, respectively, show the viscous stress and heat flux profiles in

the x-direction for the above cases of MS ¼ 1:2 and 9, where the symbols (s) denote the computed viscous

stress in the x-direction and the symbols (n) denote the computed heat flux in the negative x-direction. The
origin has been set at the point in the profile where the density is midway. It can be shown from Figs. 9 and

10, for the low Mach number ðMS ¼ 1:2Þ shock structure almost in the continuum regime, the profiles of the
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viscous stress and heat flux only have a little deviation from the symmetric equilibrium distribution based

on the center of the wave. However, for the high Mach number ðMS ¼ 9Þ shock flow in the rarefied regime,

prominent asymmetric distribution appears in the profiles, the peak of the profiles is far from the center of

the wave, the significant increase in the heat flux is accentuated by a region at the front of the wave, as the

transport of the kinetic energy represented by the heat flux is late to the transport of the momentum

represented by the shear stress in the normal shock wave flow.

5.3. Two-dimensional supersonic flows past cylinder from rarefied regime to continuum

The steady supersonic flows past a circular cylinder under various free-stream Mach ðM1Þ and Knudsen

numbers are computed. Here, due to symmetry, only half plane on the cylinder is considered and symmetry

boundary conditions were employed. The mesh system used is 71� 51 (streamwise� surface normal) in the
physical space and the modified Gauss–Hermite quadrature formula with 32� 16 discrete velocity ordinate

points was employed. The computational results of the pressure and Mach number contours are shown in

Figs. 11 and 12, respectively, respected to the states of M1 ¼ 1:8, Pr ¼ 2=3, c ¼ 5=3, the ratio Tw=T0 ¼ 1 of

the wall temperature to the total temperature, Kn ¼ 1; 0:1; 0:03 and Kn ¼ 0:001 ðM1 ¼ 4Þ. It is shown in

Figs. 11 and 12 that there is no shock wave disturbing region for the fully rarefied flow related to Kn ¼ 1,

however, the strong disturbing domain and the dim bow shock appear in the rarefied transition flows re-

lated to Kn ¼ 0:1 and Kn ¼ 0:03, and for the near continuum flow of Kn ¼ 0:001, the flow structures in-

cluding the front bow shock, stagnation region and near wake are well captured. The smaller is the
Knudsen number, the thinner and clearer is the bow shock occurring in front of the body. It is qualitatively

shown from Figs. 11 and 12 that the gas flow approaches to continuum flow from rarefied transition flow

while the Knudsen number is diminishing from Kn ¼ 1 to Kn ¼ 0:001.
To try out the computation of the present algorithm to the two-dimensional continuum flow, the case of

Kn ¼ 0:0001, M1 ¼ 1:8, Pr ¼ 2=3, Tw ¼ T0 and c ¼ 5=3 in the continuum flow regime was set with the

71� 51 space cells and the modified Gauss–Hermite quadrature formula with 32� 16 discrete points. The

computed results of pressure, density, temperature, Mach number contours and wake flow structures are
Kn=0.1Kn=1

Kn=0.03 Kn=0.001,Mach=4

Fig. 11. Pressure contours of cylinder for supersonic flows with various Kn.



Kn=0.1Kn=1

Kn=0.03 Kn=0.001,Mach=4

Fig. 12. Mach number contours of cylinder for supersonic flows with various Kn.
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shown in Fig. 13. The flow structures including the front bow shock, the stagnation region, the recom-

pression shock and the wake region are captured very well. An enlarged view of the recirculation zone past

the circular cylinder is scored clearly in Fig. 13(e), as is only the feature of the continuum flow. For
comparison purpose, the computed results from [56] using a Navier–Stokes solver (based on a high reso-

lution finite-difference method) are also shown in Fig. 14 for the similar flow conditions ðReD ¼ 2996,

M1 ¼ 1:8Þ. By comparing the results shown in Fig. 13 to those shown in Fig. 14, it can be found that most

of the flow structures are similar. The distribution of the pressure along wall surface for the state of

Kn ¼ 0:0001 and M1 ¼ 1:8 is shown in Fig. 15 together with the continuum theoretic data from [57]. In

Fig. 15, the horizontal coordinates denote the angle along wall surface far from the stagnation line between

the free-stream direction and the outward direction normal to the wall surface, the vertical coordinates

denote the non-dimensional pressure, the symbols (s) indicate the continuum theoretic solutions from [57],
the symbols ðdÞ indicate the computed results. It is shown that the computed results agree with the con-

tinuum theoretic data. The foregoing comparisons from Figs. 13–15 confirm that the present method is

reliable in solving continuum gas flows.

The stagnation line profiles of density are shown in Fig. 16 together with the DSMC results from [58] for

two Knudsen numbers ðKn ¼ 1; 0:3Þ with the states of M1 ¼ 1:8, Pr ¼ 1, Tw=T0 ¼ 1. Here, the space grid

system used is 41� 35, and the modified Gauss–Hermite quadrature formula with 32� 16 discrete points

was employed. In Fig. 16, the solid line denotes the computed Kn ¼ 0:3 results, the symbols (�) denote the

DSMC results of Kn ¼ 0:3, the dashed line denotes the computed Kn ¼ 1 results, and the symbols ðnÞ
denote the DSMC results of Kn ¼ 1. In general good agreement between the present computations and

DSMC solutions can be observed.

In Fig. 17, the comparisons between the calculated cylinder drag coefficients and experimental data for

argon gas are given for the cases of M1 ¼ 1:96, Pr ¼ 2=3, Tw=T0 ¼ 0:7, c ¼ 5=3, Kn ¼ 6; 0:6; 0:08;
0:01; 0:001 and 0.0001. The symbols (s) denote the experimental data from [59] and the relevant con-

tinuum flow limit solution, and the symbols ðdÞ denote the computed results. It is shown that the computed

results agree with the experimental data very well.
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5.4. Supersonic flows around sphere with various Knudsen numbers

To test the present numerical method solving the three-dimensional flows in serial computer, the flow

states related to M1 ¼ 2:0, Pr ¼ 0:72, Tw=T0 ¼ 0:7, c ¼ 1:4, Kn ¼ 0:0126; 0:0232; 0:126; 0:248; 1:26 past
. 7 4

9 1

8

7

4

2

3

.

7 9

. 1 1



Fig. 14. Continuum Navier–Stokes solutions past cylinder for M1 ¼ 1:8; ReD ¼ 2966 from [56]. (a) Pressure; (b) density; (c) tem-

perature; (d) Mach no.; (e) practical tracing.
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sphere were simulated in a 512M microcomputer. The 31� 19� 25 space cells of the streamwise,

circumferential and surface normal directions and the modified Gauss–Hermite quadrature formula were

used with 16� 14� 14 discrete velocity grid points. In Table 1, the comparisons between the calculated

sphere drag coefficients and the experimental data from [60] are shown. The computed results agree with the

experimental data well. The computational results of the pressure contours in the symmetry plane are

shown in Fig. 18 for the foregoing case of Kn ¼ 0:0126. It is shown that the thickening of the front bow

shock is the noticeable characteristics in the rarefied transition flow.
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6. Development of HPF parallel code for the unified algorithm

It has been made out from the computation of the three-dimensional flows that the present unified al-

gorithm requires to use six-dimensional array to access the discrete velocity distribution functions for every

points in the discrete velocity space and physical space so that a great deal of computer memory needs to be

occupied in solving three-dimensional flow problems. It is impractical by using serial computers at the

present time for the present algorithm to run the careful computation of three-dimensional complex

problems. On the other hand, it has been shown from the study that the gas kinetic algorithm solving the
velocity distribution functions in the phase space consisting of the velocity space and the physical space can

be split up into two parts, one is that the discrete velocity distribution functions can be solved indepen-

dently and concurrently by the numerical method described in Section 4 at every given discrete velocity

points, the other is on the basis of the solved discrete velocity distribution functions that the macroscopic



Table 1

Drag coefficients of sphere for M1 ¼ 2 with various Kn

Kn Calculateda Experimentalb Error (%)c

0.0126 1.7049 1.5997 6.58

0.0232 1.7467 1.6621 5.09

0.126 2.2472 2.1779 3.18

0.248 2.3771 2.3287 2.08

1.26 3.1902 3.1494 1.30

a The present computed results.
b The experimental date from [60].
c The relative error.
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Fig. 17. Drag coefficients of cylinder.

Fig. 18. Pressure contours of sphere for Kn ¼ 0:0126; M1 ¼ 2.
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flow properties can be evaluated by the discrete velocity quadrature methods described in Section 3.2 at

each point of the physical space. The essential and important feature of the above-mentioned computation

strategy is that the calculations in the velocity space can be decoupled from those in the physical space in

the gas kinetic algorithm. Consequently, the parallel processing capability of a supercomputer is quite

suitable for the computation strategy in the present algorithm. The inner concurrent peculiarity of the gas

kinetic numerical method makes good opportunities for computing complex flow problems. To resolve

the difficulty on the vast computer memory and runtime needed by the present method in solving three-

dimensional complex problems, the multi-processing strategy suitable for the gas kinetic numerical algo-
rithm has been investigated by distributing the discrete velocity space points over processors of the

supercomputer, and the parallel code software adapted to the present unified algorithm has been developed

under the HPF parallel environment offered by the supercomputer from National Parallel Computing

Research Center in China.

To test the performance of the HPF parallel program, the speed-up ratio and parallel efficiency are,

respectively, shown in Figs. 19(a) and (b). It can be shown that the unified algorithm is quite suitable for

parallel calculations, and the efficiency of concurrent calculations is found rather high.
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Fig. 19. (a) Sped-up ratio. (b) Parallel efficiency.
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Fig. 20. Pressure contours of symmetric plane past sphere. (a) Kn ¼ 1, M1 ¼ 3; (b) Kn ¼ 0:005, M1 ¼ 3.
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To verify the HPF parallel code of the unified algorithm in solving the three-dimensional flow problems

from various flow regimes, the steady supersonic flows around sphere are computed under the cases of

M1 ¼ 3, Pr ¼ 0:72, Tw=T0 ¼ 1, c ¼ 1:4, Kn ¼ 1 and 0:005. The grid system used is 51� 41� 25 in the

physical space and the modified Gauss–Hermite quadrature formula was employed with 16� 14� 14

discrete velocity ordinate points. In Fig. 20, results of concurrent calculations of the pressure contours in

the symmetrical plane are presented. Fig. 20(a) describes the fully rarefied flow related to Kn ¼ 1, and

Fig. 20(b) describes the near continuum flow of Kn ¼ 0:005 which occurs obvious bow shock and stag-

nation region in front of the body.
To illustrate the capability of the HPF parallel program for the flows past complex bodies, the steady

supersonic rarefied flows past the spacecraft shape under various Knudsen numbers and angles of attack

are computed with free stream conditions: M1 ¼ 2, Pr ¼ 0:72, Tw=T0 ¼ 1 and c ¼ 1:4. The space mesh of

81� 41� 19 cells in streamwise, circumferential and surface normal directions was used. The discrete

velocity grid system has 14� 14� 14 points in ðVx; Vy ; VzÞ directions with the modified Gauss–Hermite

quadrature formula. The parallel results of the density and Mach number contours in the symmetrical

plane are, respectively, shown in Figs. 21 and 22, respected to the states of the angle of attack a ¼ 0�,
Kn ¼ 5; 0:1 and 0.01. The order (a), (b) and (c) in each of the figures, respectively, corresponds to results of
Kn ¼ 5; 0:1 and 0:01. Figs. 23(a)–(c), respectively, show the computed results of the density, pressure and

Mach number contours in the symmetrical plane related to the aforementioned free-stream conditions with
Fig. 21. Density contours in the symmetric plane past spacecraft with various Knudsen numbers. (a) Kn ¼ 5, M1 ¼ 2; (b) Kn ¼ 0:1,

M1 ¼ 2; (c) Kn ¼ 0:01, M1 ¼ 2.

Fig. 22. Mach number contours in the symmetric plane past spacecraft with various Knudsen numbers. (a) Kn ¼ 5, M1 ¼ 2; (b)

Kn ¼ 0:1, M1 ¼ 2; (c) Kn ¼ 0:01, M1 ¼ 2.



Fig. 23. Supersonic gas flow past spacecraft with M1 ¼ 2; Kn ¼ 0:01 and a ¼ 20�. (a) Density; (b) pressure and (c) Mach number.
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a ¼ 20�, Kn ¼ 0:01. It is shown from Figs. 21–23 that for the near continuum flow of Kn ¼ 0:01, the flow

structures including front bow shock, stagnation region and recompression shock are well captured, for the

more rarefied flow of Kn ¼ 0:1, the thickening of the front bow shock and no recompression shock in the
wake flow are the noticeable differences to the flow of Kn ¼ 0:01, for the near free-molecule flow of Kn ¼ 5,

there only exists strong disturbance around the body with no shock wave. While the Knudsen number

diminishes from Kn ¼ 5, Kn ¼ 0:1 to Kn ¼ 0:01, the gas flows past the spacecraft are gradually becoming

from the near free-molecule flow, rarefied transition to the near continuum flow.
7. Concluding remarks

In this study, the Boltzmann simplified velocity distribution function equation describing microscopic

molecular transport phenomena of various flow regimes is transformed into the hyperbolic conservation

equations with nonlinear source terms by introducing the discrete velocity ordinate method. The discrete

velocity numerical integration methods are developed for various Mach number flows to evaluate the

macroscopic flow moments over the velocity space. Based on the decoupling technique on molecular

movement and collision in the DSMC method, the gas kinetic unified algorithm for solving the molecular

velocity distribution function has been established by the aid of the unsteady time-splitting finite difference

method and the NND scheme. To test the feasibility of the present unified algorithm in solving the gas flows
from rarefied transition to continuum regime, the one-dimensional shock-tube problems, the flows past

two-dimensional circular cylinder and the flows around three-dimensional sphere with various Knudsen

numbers are simulated in serial computers. The computational results are found in high resolution of the

flow fields and good agreement with the relevant theoretical, DSMC, N–S and experimental results. The

HPF parallel implementation of the unified algorithm has been developed under the data parallel envi-

ronment offered by the HPF programming language. It is shown by the study that the HPF parallel al-

gorithm has not only high parallel efficiency, but also good expansibility. To illustrate the reliability of the

present HPF parallel code, the flows around sphere and the spacecraft shape with various Knudsen
numbers and angles of attack are computed in the supercomputer. The concurrent calculations show that

the present HPF parallel algorithm can effectively simulate the three-dimensional complex flows from

various flow regimes. As the general remarks, the present method provides a considerable and efficient way

that the gas dynamical problems from rarefied flow to continuum can be reliably resolved.

It has been shown from the above computations that the results of the present method are not sensitive

to the grid spacing in the physical space or the velocity space if only the computing precision be satisfied,

however, the finer is the grid, the better should be the precision of the results for certain at the expense of
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more computing memory and time. The present method is very stable and robust without the limitation of

the cell size, unlike the DSMC method which exists statistical fluctuations and requires that the grid spacing

have to be less than the mean free path, in general, the computational speed of the present method seems be

faster than the DSMC method in computing one- and two-dimensional problems of the rarefied flows. It

has been shown from the computations that the computer time required for the present method increases as

the Knudsen number decreases. In the computation of the continuum flow, as the molecular mean collision

time is generally smaller than the time step determined by the stable condition of the finite difference

scheme, then the computing time step given by Eq. (34) will be quite little at the magnitude of 10�5, as a
result, the convergent speed of the present method seems be slower than that of the Navier–Stokes solver

for the continuum flow regime, especially in the computations of two- or three-dimensional continuum

flows. In addition, the computations of the one- and two-dimensional flows in the present paper have been

processed in the 128M microcomputers, however, the computations of three-dimensional flows have to be

operated at least in 512M computers or by the parallel processing in a supercomputer.
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